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Introduction: Voice-based diagnosis of laryngeal diseases has emerged as 
a promising non-invasive approach in medical technology. However, clinical 
practice often suffers from limited datasets, making it difficult to train robust 
machine learning models. This study investigates the role of small data in 
enabling accurate and efficient detection of laryngeal disorders through 
voice analysis. 

Material and Methods: A comprehensive machine learning framework 
was developed, incorporating feature extraction techniques such as mel-
frequency cepstral coefficients, jitter, shimmer, harmonics-to-noise ratio, 
and spectral analysis. To overcome small-data limitations, data 
augmentation strategies, transfer learning from pre-trained speech models, 
and robust cross-validation were applied. The system was trained and 
evaluated on limited voice samples collected from patients with diverse 
laryngeal conditions and healthy controls. 

Results: Despite the restricted dataset size, the proposed models achieved 
competitive performance. The CNN with transfer learning reached an 
average accuracy of 86%, F1-score of 83%, and AUC of 0.90, outperforming 
classical approaches such as SVM and Random Forest. Augmentation 
improved generalization and minority class detection, while feature 
engineering highlighted the discriminative power of voice quality 
parameters. Error analysis revealed challenges in detecting mild disorders 
and borderline cases, but overall results confirmed the feasibility of small-
data approaches. 

Conclusion: This research underscores the transformative role of small 
data in advancing voice-based machine learning for laryngeal disease 
diagnosis. By demonstrating that effective diagnostic systems can be built 
with limited samples, the study opens new pathways for clinical applications 
where large datasets are impractical. The approach contributes to 
democratizing AI-driven healthcare solutions, making them more accessible, 
scalable, and clinically relevant in real-world medical contexts.  
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INTRODUCTION 

Laryngeal diseases are among the most common 

disorders affecting vocal health, with early symptoms 
often manifesting as changes in voice quality [1]. 
Traditional diagnostic methods such as 
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laryngoscopy, while effective, are invasive, costly, and 
require specialized expertise [2, 3]. voice-based 
diagnosis has emerged as a promising non-invasive 
alternative, offering rapid, affordable, and patient-
friendly screening opportunities [1]. 

The application of machine learning (ML) in voice 
pathology has grown significantly in recent years. ML 
algorithms can analyze acoustic features such as mel-
frequency cepstral coefficients (MFCCs), jitter, 
shimmer, and harmonics-to-noise ratio (HNR), which 
are strongly correlated with laryngeal dysfunction [2, 
4]. These features allow automated systems to detect 
subtle irregularities in vocal fold vibrations that may 
not be perceptible to human listeners [5]. 

However, one of the major challenges in clinical 
implementation is the scarcity of large-scale datasets. 
Most ML models rely on extensive training data to 
achieve generalizable performance, yet in medical 
practice, collecting large datasets is often impractical 
due to privacy concerns, patient recruitment 
limitations, and variability in recording conditions [6, 
7]. This limitation has motivated researchers to 
explore the potential of small data approaches, where 
carefully curated and augmented datasets, combined 
with transfer learning, can yield reliable diagnostic 
outcomes [8] . 

Recent studies have demonstrated that augmentation 
techniques such as pitch shifting, time stretching, and 
noise injection can significantly improve model 
generalization [9-11]. Moreover, transfer learning 
from pre-trained speech models has proven effective 
in adapting knowledge from large corpora to small 
clinical datasets [12, 13]. These strategies not only 
enhance performance but also align with real-world 
scenarios, where physicians often work with limited 
patient samples [14, 15]. 

The importance of small data lies in its adaptability 
and clinical relevance. By leveraging augmentation 
and transfer learning, researchers have shown that 
small datasets can still support robust classification 
performance, making AI-driven diagnostic systems 
more accessible in resource-limited settings [16]. 
Therefore, this study aims to investigate the role of 
small data in enabling effective voice-based machine 
learning systems for laryngeal disease diagnosis. By 
integrating domain-specific feature engineering, 
augmentation strategies, and transfer learning, the 
research seeks to demonstrate that reliable 
diagnostic systems can be developed even under 
data-constrained conditions. 

MATERIAL AND METHODS 

Dataset and participants 

The dataset consisted of voice recordings from two 
groups: 

• Patient group: Individuals clinically 
diagnosed with laryngeal diseases such as 
vocal fold nodules, polyps, paralysis, and 
chronic laryngitis. Each diagnosis was 
confirmed by an otolaryngologist using 
laryngoscopic examination. 

• Control group: Healthy participants with no 
history of voice disorders, serving as 
baseline references. 

Each participant was instructed to produce sustained 
vowels (/a/, /i/, /u/) for 3–5 seconds, as well as short 
sentences designed to capture natural speech. The 
total dataset included fewer than 200 samples, 
reflecting the small data challenge. Demographic 
information such as age and gender was recorded to 
analyze variability across populations. 

Recording environment and equipment 

Recordings were conducted in semi-soundproof 
clinical rooms to minimize external noise. Equipment 
specifications included: 

• Microphone: High-quality condenser 
microphone with flat frequency response. 

• Sampling rate: 44.1 kHz, 16-bit resolution. 

• Software: Professional audio recording 
software with real-time monitoring. 

To ensure consistency, microphone placement was 
standardized at 15 cm from the participant’s mouth. 
Calibration was performed before each session to 
maintain uniform recording quality. 

Feature extraction 

A multi-level feature extraction pipeline was 
designed: 

• Spectral features: 

o MFCCs: Capturing the spectral 
envelope of speech, widely used in 
pathology detection. 

o Spectrograms: Time-frequency 
representations used as input for 
CNN models. 

• Prosodic features: 

o Pitch (F0): Fundamental frequency 
variations. 

o Intensity: Amplitude-based energy 
levels. 

• Voice quality features: 

o Jitter and Shimmer: Measuring 
micro-variations in frequency and 
amplitude. 

o HNR: Quantifying hoarseness and 
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breathiness. 

• Advanced features: 

o Spectral entropy: Assessing 
irregularity in vocal fold vibrations. 

o Formant frequencies (F1–F3): 
Providing information about vocal 
tract resonance. 

Data augmentation and preprocessing 

To address the limited dataset size, augmentation 
techniques were applied: 

• Pitch shifting: ±2 semitones to simulate 
natural variability. 

• Time stretching: ±10% to mimic different 
speaking rates. 

• Noise injection: Adding controlled Gaussian 
noise to improve robustness. 

• Synthetic sample generation: Using 
generative adversarial networks (GANs) to 
create realistic voice samples. 

Preprocessing steps included normalization of 
amplitude, trimming silence, and resampling to 
ensure uniformity across all recordings. 

Machine learning models 

Several machine learning approaches were tested: 

• Support vector machines (SVM): Effective 
for small datasets with high-dimensional 
features. 

• Random Forests: Ensemble-based 
classification with feature importance 
analysis. 

• Convolutional Neural Networks (CNNs): 
Applied to spectrograms for automatic 
feature learning. 

• Transfer Learning: Pre-trained speech 
recognition models (e.g., VGGish, wav2vec) 
fine-tuned on the small dataset. 

Hyperparameter tuning was performed using grid 
search, optimizing parameters such as kernel type 
(SVM), number of trees (Random Forest), and 
learning rate (CNN). 

Evaluation metrics 

Performance was evaluated using: 

• Accuracy: Overall correctness of 
classification. 

• Precision and Recall: Measuring diagnostic 
reliability for each class. 

• F1-score: Balancing precision and recall. 

• ROC curves and AUC: Assessing 
discriminative ability. 

• Cross-validation (k-fold, k=10): Ensuring 
robustness against overfitting in small data 
scenarios. 

RESULTS 

The evaluation of the proposed machine learning 
framework for laryngeal disease diagnosis using 
voice signals under small-data conditions yielded 
comprehensive insights into model performance, 
robustness, and clinical applicability. Despite the 
limited dataset size, the experiments demonstrated 
that carefully designed preprocessing, augmentation, 
and transfer learning strategies can achieve 
diagnostic accuracy comparable to systems trained 
on larger datasets. 

Overall performance 

Across all experiments, the CNN model with transfer 
learning achieved the highest performance. The 
average accuracy reached 86%, with a macro-
averaged F1-score of 83% and an AUC of 0.90. These 
results highlight the potential of small data when 
combined with advanced learning strategies. 
Classical models such as SVM also performed well, 
achieving 82% accuracy, but were less sensitive to 
subtle pathological variations. 

The performance stability was confirmed through 
10-fold cross-validation, with standard deviations 
below 0.02 for accuracy and F1-score, indicating 
consistent results across folds (Table 1). 

Table 1: Overall performance of models under small-data 
conditions 

Model Accuracy F1-score AUC 

CNN + Transfer Learning 0.86 0.83 0.90 

SVM (RBF kernel) 0.82 0.81 0.87 

Random Forest 0.79 0.78 0.84 

CNN (scratch) 0.80 0.79 0.86 

Class-wise analysis 

The system demonstrated higher sensitivity in 
detecting pathological voices compared to healthy 
controls. Pathological samples achieved precision 
and recall above 85%, while healthy voices 
occasionally produced false positives, particularly in 
cases of natural breathiness (Table 2). 

Table 2: Class-wise performance metrics 

Class Precision Recall F1-score 

Pathological 0.87 0.85 0.86 

Healthy 0.80 0.81 0.81 



The power of small data  Mohammadjavad Sayadi et al.  

 

Volume 1 | Article 8 | Dec 2025   Page 4 of 7 

Effect of data augmentation 

Data augmentation significantly improved 
generalization and robustness. Pitch shifting and 
time stretching improved recall by simulating natural 
variability in speech, while controlled noise injection 
increased robustness against environmental 
disturbances. The introduction of synthetic samples 
using generative models further balanced class 
distribution, leading to measurable improvement in 
minority class detection (Table 3). 

Table 3: Impact of augmentation strategies on performance 

Augmentation Strategy Accuracy F1-score AUC 

No augmentation 0.81 0.79 0.85 

Pitch shift + time stretch 0.84 0.82 0.87 

+ Noise injection (SNR ≥ 20 dB) 0.85 0.82 0.88 

+ GAN-based synthetic balancing 0.86 0.83 0.90 

Robustness and error patterns 

Noise robustness tests showed that models remained 
stable under moderate noise (SNR ≥ 20 dB), with only 
minor reductions in AUC. Standardized microphone 
placement reduced variance in F1-score from ±0.04 
to ±0.02, confirming the importance of consistent 
data collection. Error analysis revealed that mild 
laryngeal disorders were more likely to be 
misclassified as healthy, while healthy voices with 
naturally lower Harmonics-to-Noise Ratios were 
sometimes misclassified as pathological. 

Statistical significance 

Paired statistical tests confirmed that CNN with 
transfer learning significantly outperformed SVM 
(p<0.05). The mean F1-score difference was +0.024, 
validating the superiority of deep learning 
approaches in small-data contexts. 

Calibration and thresholds 

Calibration curves showed that both CNN and SVM 
models were reasonably well-calibrated, with 
expected calibration error (ECE) values of 0.06 and 
0.07, respectively. Adjusting the decision threshold 
from 0.50 to 0.45 increased pathological recall by 3.4 
percentage points, with only a minor precision loss of 
1.2 percentage points. 

Computational efficiency 

Training and inference times confirmed the 
feasibility of near-real-time screening applications 
(Table 4). 

Clinical relevance 

The system’s sensitivity to pathological voices 
suggests its potential as a screening tool to identify 
patients requiring further laryngoscopic 

examination. The non-invasive nature of voice-based 
diagnosis, combined with the ability to function 
effectively on small datasets, makes this approach 
particularly valuable in clinical settings where large-
scale data collection is impractical. 

Table 4: Computational efficiency of models 

Model 
Training Time 
(per fold) 

Inference Latency 
(per sample) 

SVM ~2.5 min (CPU) ~22 ms 

CNN (scratch) ~12 min (GPU) ~30 ms 

CNN + Transfer 
Learning 

~7 min (GPU) ~35 ms 

DISCUSSION  

The results of this study reinforce the growing 
evidence that voice-based diagnosis can serve as a 
reliable, non-invasive tool for detecting laryngeal 
diseases [17]. While traditional diagnostic methods 
such as laryngoscopy remain the gold standard, their 
invasive nature and limited accessibility highlight the 
need for alternative approaches [18]. Our findings 
confirm that machine learning models trained on 
small datasets, when combined with augmentation 
and transfer learning, can achieve diagnostic 
accuracy comparable to systems trained on larger 
corpora [2, 4, 5]. 

One of the most significant insights is the 
discriminative power of voice quality features such as 
jitter, shimmer, and HNR. These features have been 
consistently reported as strong indicators of 
pathological voices [6, 19] and our study further 
validates their utility in small-data contexts. Unlike 
general-purpose features such as MFCCs, which 
provide a broad spectral representation, voice quality 
parameters directly capture irregularities in vocal 
fold vibrations, making them particularly relevant for 
clinical applications [20]. 

The role of data augmentation was also critical. 
Techniques such as pitch shifting, time stretching, 
and noise injection expanded the variability of the 
dataset, improving generalization and robustness. 
Similar findings have been reported in speech 
recognition and pathology detection studies [21, 22]. 
Moreover, the use of GAN-based synthetic balancing 
improved minority class detection, aligning with 
prior work on data-efficient deep learning in medical 
voice analysis [23, 24]. 

Transfer learning emerged as the most impactful 
strategy. By fine-tuning pre-trained models such as 
wav2vec, our system leveraged knowledge from 
large-scale speech datasets and adapted it to the 
small clinical dataset. This approach not only 
improved accuracy but also reduced training time, 
consistent with previous studies demonstrating the 
effectiveness of transfer learning in healthcare 
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applications [25-27]. 

From a clinical perspective, the system’s sensitivity to 
pathological voices suggests its potential as a 
screening tool. While not intended to replace 
laryngoscopic examination, voice-based diagnosis 
can serve as a preliminary step to identify patients 
requiring further evaluation. This aligns with recent 
research advocating for AI-driven, non-invasive 
diagnostic systems to democratize healthcare access 
[28, 29]. 

Nevertheless, limitations must be acknowledged. The 
relatively small dataset restricts generalizability, and 
subtle cases of early-stage disorders were more 
difficult to detect. False positives in healthy voices, 
particularly those with naturally lower HNR values, 
highlight the need for improved calibration and 
threshold optimization. Future research should focus 
on expanding datasets, incorporating multimodal 
information (e.g., patient demographics and medical 
history), and refining hybrid models to enhance 
diagnostic accuracy. 

In summary, this study contributes to the growing 
body of literature demonstrating that small data, 
when combined with augmentation, transfer 
learning, and domain-specific feature engineering, 
can support robust voice-based diagnostic systems. 
These findings not only advance the field of medical 
speech processing but also underscore the broader 
role of small data in artificial intelligence, paving the 
way for scalable and accessible healthcare solutions. 

CONCLUSION  

This study demonstrated that small data, when 
combined with carefully designed methodologies, 
can serve as a powerful foundation for developing 
voice-based machine learning systems in the 
diagnosis of laryngeal diseases. Despite the inherent 
limitations of restricted sample sizes, the integration 
of domain-specific feature extraction, augmentation 
strategies, and transfer learning enabled the models 
to achieve competitive accuracy and robustness. 
These findings challenge the prevailing assumption 
that large datasets are indispensable for medical AI 
applications, and instead highlight the potential of 
small, well-curated datasets to deliver clinically 
meaningful outcomes. 

The results emphasize the importance of voice 
quality features such as jitter, shimmer, and 
Harmonics-to-Noise Ratio, which proved highly 
discriminative in distinguishing pathological voices. 
Furthermore, augmentation techniques expanded 
the variability of the dataset, improving 
generalization and minority class detection. Transfer 
learning emerged as the most impactful approach, 
allowing knowledge from broader speech datasets to 
be effectively adapted to the small-data clinical 
context. 

From a clinical perspective, the system’s sensitivity to 
pathological voices positions it as a promising 
screening tool for early detection and triage. While 
not intended to replace laryngoscopic examination, 
such non-invasive diagnostic systems can reduce 
barriers to healthcare access, particularly in 
resource-limited settings. By enabling preliminary 
screening through voice analysis, healthcare 
providers can prioritize patients for further 
examination, thereby improving efficiency and 
reducing diagnostic delays. 

Nevertheless, limitations remain. The relatively small 
dataset restricts generalizability, and subtle cases of 
early-stage disorders were more difficult to detect. 
Future research should focus on expanding datasets, 
incorporating multimodal information (e.g., patient 
demographics and medical history), and refining 
calibration strategies to reduce false positives. 

In conclusion, this research underscores the 
transformative role of small data in advancing AI-
driven healthcare. By validating the feasibility of 
small-data approaches, it opens new pathways for 
scalable, accessible, and clinically relevant diagnostic 
tools. The study contributes not only to the field of 
medical speech processing but also to the broader 
discourse on the role of small data in artificial 
intelligence, paving the way for innovative solutions 
that democratize healthcare technologies. 
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